A circulant preconditioner for fractional diffusion equations
نویسندگان
چکیده
The implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable, is employed to discretize fractional diffusion equations. The resulting systems are Toeplitz-like and then the fast Fourier transform can be used to reduce the computational cost of the matrix-vector multiplication. The preconditioned conjugate gradient normal residual method with a circulant preconditioner is proposed to solve the discretized linear systems. The spectrum of the preconditioned matrix is proven to be clustered around 1 if diffusion coefficients are constant; hence the convergence rate of the proposed iterative algorithm is superlinear. Numerical experiments are carried out to demonstrate that our circulant preconditioner works very well, even though for cases of variable diffusion coefficients.
منابع مشابه
Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملPreconditioning Techniques for Diagonal-times-Toeplitz Matrices in Fractional Diffusion Equations
The fractional diffusion equation is discretized by an implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable. The coefficient matrix of the discretized linear system is equal to the sum of a scaled identity matrix and two diagonal-times-Toeplitz matrices. Standard circulant preconditioners may not work for such Toeplitz-like linear systems. The mai...
متن کاملStrang-type preconditioners for solving fractional diffusion equations by boundary value methods
The finite difference scheme with the shifted Grünwarld formula is employed to semi-discrete the fractional diffusion equations. This spatial discretization can reduce to the large system of ordinary differential equations (ODEs) with initial values. Recently, boundary value method (BVM) was developed as a popular algorithm for solving large systems of ODEs. This method requires the solutions o...
متن کاملA new model of (I+S)-type preconditioner for system of linear equations
In this paper, we design a new model of preconditioner for systems of linear equations. The convergence properties of the proposed methods have been analyzed and compared with the classical methods. Numerical experiments of convection-diffusion equations show a good im- provement on the convergence, and show that the convergence rates of proposed methods are superior to the other modified itera...
متن کاملGeneralized circulant Strang-type preconditioners
SUMMARY Strang's proposal to use a circulant preconditioner for linear systems of equations with a Hermitian positive definite Toeplitz matrix has given rise to considerable research on circulant preconditioners. This paper presents an {e iϕ }-circulant Strang-type preconditioner.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 242 شماره
صفحات -
تاریخ انتشار 2013